QUIZ 9 SOLUTIONS: LESSON 10 SEPTEMBER 19, 2018

Write legibly, clearly indicate the question you are answering, and put a box or circle around your final answer. If you do not clearly indicate the question numbers, I will take off points. Write as much work as you need to demonstrate to me that you understand the concepts involved. If you have any questions, raise your hand and I will come over to you.

A corporation is initially worth 1 million dollars. Let $V(t)$ denote the value of the company after t years. Suppose that V is growing in value by 20% each year and gaining 15% of a growing market estimated at $100 e^{2 t}$ million dollars.

1. [3 pts] Write down a differential equation that describes the change in the value of the company.

Solution: We are looking for an equation for $\frac{d V}{d t}$. We are told that V is increasing by 20% each year and gaining 15% of an emerging market. This "and" will be represented by a "+". We write

$$
\frac{d V}{d t}=.2 V+.15\left(100 e^{.2 t}\right)=.2 V+15 e^{.2 t}
$$

2. [5 pts] Find a general solution to the differential equation described in \# 1 .

Solution: We observe that

$$
\frac{d V}{d t}=.2 V+15 e^{.2 t}
$$

is a FOLDE but not quite in the correct form. We slightly rewrite to get

$$
\frac{d V}{d t}-.2 V=15 e^{2 t}
$$

Now, we may go through our steps.
Step 1: Find P, Q
$P(t)=-.2, \quad Q(t)=15 e^{.2 t}$
Step 2: Find the integrating factor

$$
\begin{aligned}
u(t) & =e^{\int P(t) d t} \\
& =e^{\int(-.2) d t} \\
& =e^{-.2 t}
\end{aligned}
$$

Step 3: Set up solution

$$
\begin{aligned}
V \cdot u(t) & =\int Q(t) u(t) d t \\
\Rightarrow \quad V \underbrace{\left(e^{-.2 t}\right)}_{u(t)} & =\int \underbrace{\left(15 e^{.2 t}\right)}_{Q(t)} \underbrace{\left(e^{-.2 t}\right)}_{u(t)} d t \\
& =\int 15 e^{.2 t} e^{-.2 t} d t \\
& =\int 15 e^{.2 t-.2 t} d t \\
& =\int 15 \underbrace{e^{0}}_{1} d t \\
& =\int 15 d t \\
\Rightarrow V e^{-.2 t} & =15 t+C \\
\Rightarrow \quad V & =\frac{15 t+C}{e^{-.2 t}}=e^{.2 t}(15 t+C)
\end{aligned}
$$

3. [2 pts] Find the value of the company after 10 years (round your answer to the nearest million).

Solution: In \# 2, we computed the general solution to our differential equation. We now use the fact that $V(0)=1$ to solve for C. Write

$$
\begin{aligned}
\underbrace{1}_{V(0)} & =e^{\cdot 2 \cdot 0}(15 \cdot 0+C) \\
& =1 \cdot(0+C)=C \\
\Rightarrow \quad 1 & =C
\end{aligned}
$$

Thus,

$$
V(t)=e^{.2 t}(15 t+1)
$$

Finally, we write

$$
V(10)=e^{.2(10)}(15(10)+1) \approx 1116 \text { million dollars }
$$

